
I -A163 906 DISTRIBUTED FIFO ALLOCATION OF IDENTICAL RESOURCES 1
USING SHALL SHARED SPR..(U) MASSACHUSETTS INST OF TECH
CANBRIDGE LAB FOR COMPUTER SCIENCE..

UNCLASSIFIED N J FISCHER ET AL. OCT 85 NIT/LCS/TM-298 F/G 9/2 NL

Elnnllilhlhll
-mhmhhhhhhu

l~nlllll-n .

-f

L6 1 2.0

11111_L25 lI6

MICROCOPY RESOLUTION TEST CHART

I NUARDS 19,

rz

MASSACHUSETTS .-* LABORATORY FOR INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

MIT/LCS/TM-290

00

(V)

," (-..

DISTRIBUTED FIFO ALLOCATION OF IDENTICAL
RESOURCES USING SMALL SHARED SPACE

Michael J. Fischer, Nancy A. Lynch,

James E. Burns and Allan Borodin

DTIC
E LECTE, -

FEB 0 71986-

October 1985

*'l Its

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139 0

86 2 7 052
. . A - -~.~h' A~ 5

% SECURITY CLASSIFICATION OF THIS PAGE eMila Dot Entered)
PAG READ INESTRUCTIONS

REPORT DOCUMENTATION PAEBEFORE COMPLETING FORM
1.RPR MUMIC 2 SIFtIPIENT'S CATALOG MUNDmER

-. ~~V+ 00SiGO~~~i N/A
4. TITLE (411d SaUU) S. TYPIE OF REPORT A PIOD0 COVERIED

"Distributed FIFO Allocation of Identical Technical Report
Resources Using Small Shared Space" 4/01/84 - 11/30/85

S. PERFORMING ORG. RIEPORT NUMBER

Michael J. Fischer, Nancy A. Lynch, James E. S OTATO RN UURO ::
Burns and Allan Borodin DAAG29-84-K-0058 -

9. PERFORMING ORGANIZATION MNZM AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

MIT Laboratory for Computer Science EAWOKNINUER

545 Technology Sq., NE43-522
Cambridge, MA. 02139

11. CONTROLLING OFFICIE NAMC AND ADDRIESS IS. REPORT DATE

U. S. Army Research Office October 1985
Post Office Box 12211I.NUEROPAS

* 1. ONIORNGA fENC 0 At 11 ADRESfierm front Controlling Office) IS. SECURITY CLASS. (of11110. Ve~of)

* Unclassified .

S..DCkASIFICATION/OOWMGRADOING

* IS. DISTRIISUTION STATEMENT (of d.1. Rleport)

* Approved for public release; distribution unlimited.

17I. DISTRIBUTION STATIEMENT (of the abstract entwere in Block 20. It different froe Repu")

NA

Is. SUPPLEMENTARY NOTES

* The view, opinions, and/or findings contained in this report are
those of the author(s) and should not be construed as an official

0 Department of the Army position, policy, or decision, unless so

It. KEY ORDS(CtLnu o.. ieI nc.m ndIwtL by block "nber)

Resource allocation, shared-memory algorithm, queue, asynchronous system,
robustness and critical section.

ft. AM"ACY (Caita. as rneers oftri fm.oMYan Iduaity &V block ntober)

*We present-a simple and efficient algorithm~ for the FIFO allocation of
identical resources among asynchronous processes which communicate via shared
memory. The algorithm simulates a shared queue but uses exponentially fewer

0 shared memory values, resulting in practical savings of time and space as
well as program complexity. The algorithm is robust against processes
failure through unannounced stopping, making it attractive also for use in an
environment of processes of widely differing speeds. In addition to its

D ON""1W3 mEom1O orFI moves is anoLIETE UNCLASSIFIED

sECUnrIY CLASSIFICATION OF THIS PAGE (When Dora Entered,

.. .,.-.%'... .

* SfCUIIYY CLASUPICAIOW OV lul1S PASS1Whm Dma Sumac

* ractical advantages, we show the algorithm is optimal (to within a constant
factor) with respect to shared space compleity. I*. *:

UNCLASIFIE

SECURITY, CLSIICTO OFT4SPJ~o oaEtr

Accession For

NTIS G!RA&I
DTIC TAB

- .;-. Distributed FIFO Allocation of Identical t [,

Resources Using Small Shared Space
By. ..j
Distribut !o/ ,-"-

Michael J. Fischer Availabiiity Codes

Yale University Avail and/or

New Haven, Connecticut Dist Special

Nancy A. Lynch James E. Burns

Massachusetts Institute of Technology Indiana University

Cambridge, Massachusetts Bloomington, Indiana . "

Allan Borodin

University of Toronto -..-

Toronto, OntariQ

June, 1985

ABSTRACT

We present a simple and efficient algorithm for the FIFO allocation of k identical resources among

asynchronous processes which communicate via shared memory. The algorithm simulates a shared queue

but uses exponentially fewer shared memory values, resulting in practical savings of time and space as well

as program complexity. The algorithm is robust against processes failure through unannounced stopping,

making it attractive also for use in an environment of processes of widely differing speeds. In addition to its

practical advantages, we show the algorithm is optimal (to within a constant factor) with respect to shared

space complexity.

Keywords: Resource allocation, shared-memory algorithm, queue, asynchronous system, robustness j
and critical section.

@1985 Massachusetts Institute of Technology, Cambridge, MA. 02139

This work was supported in part by the Office of Naval Research under Contract N00014-82-

K-0154, by the U. S. Army Research Office under Contracts DAAG29-79-C-0155 and DAAG29-84-

K-0058, and by the National Science Foundation under Grants MCS77-02474. MCS77-15628,

MCS78-01689, MCS-81 16678 and 832391-Ao1 -DCR.

I

- .: - i .

, .. - - - --... . ..-- - --- -

-. % .

Introduction

The critical section problem has been widely studied for its illustrative value r .
in problems of synchronization as well as for its practical application to real
concurrent systems [BJLFP821, (Bur8l], (CH75], [CH78], (CH791, [deB67],
[Dij65J, [EM721, [FLBB79J, [Knu66J, [Lam74, [Lam76], [Lam77], [Lam8O,.
[Mor79], [Pet8Ol, [Pet8l], JPF771, [RP761. The problem is to devise protocols
for each of several communicating asynchronous parallel processes to control
access to a designated section of code called the critical section. Such code - ""*
might manipulate a common resource, in which case access to the critical
section corresponds to allocation of the resource. In the simple case of a
single nonsharable reusable resource such as a line printer or a tape drive,
the two basic properties desired of the access policy are mutual exclusion
and impossibility of deadlock. Mutual exclusion means that two processes
can never simultaneously be executing their critical sections. Deadlock is a
situation in which one or more processes are attempting to enter or leave .

their critical sections, but none of them ever succeeds. Finding appropriate
protocols to insure these two properties is the critical section problem.

Two protocols comprise a solution. The trying protocol is the section of
code that a process executes before being admitted to its critical section,
and the exit protocol is the code to be run when the process leaves its critical
section and returns to the remainder of its code, called the remainder section.
Equivalently, the trying protocol allocates the resource corresponding to the
critical section and the exit protocol returns it to the system.

In this paper, we generalize the critical section problem to the case where
some number k > 1 of processes (but not more) are permitted to be simulta-
neously in their critical sections. Regarded as a resource-allocation problem,
we consider k identical copies of a non-sharable reusable resource, where each
process can request at most one copy of that resource. Again, entry to the
critical section corresponds to allocation of a resource copy, but we ignore
questions of just how the individual copies of the resource are managed.

The exclusion property of the k-critical section problem, that at most
k processes are ever simultaneously in their critical sections, we call k-
exclusion. To avoid degenerate solutions, we must also formalize the notion
that "it should be possible for as many as k processes to be simultaneously
in their critical sections." We interpret this to mean, roughly, that if fewer
than k processes are in their critical sections, then it is possible for another
process to enter its critical section, even though no process leaves its criti-
cal section in the meantime. We call this property "avoiding k-deadlock".

2

A
** .. .

,.-°-

Precise definitions of these properties are deferred until Section 3, after the , ..-
algorithms have been presented. '-L

A trivial generalization of a binary semaphore yields a system exhibiting ,-- .'
k-exclusion knd no k-deadlock. Assume a shared variable, COUNT, which at r -
any time contains the correct count of the number of processes currently in .
their critical sections. A process wanting to enter its critical section performs- ' .•-

an atomic transaction on COUNT which, in one indivisible step, reads the " .
value of COUNT, increments it if it was less than k, and stores back the "L''.
result. The process then proceeds to its critical section if it saw COUNT less
than k, and it loops back and repeats the test otherwise (busy-waiting). A.,".'
process leaving its critical section simply decrements COUNT. '"

This algorithm imposes no fairness criteria on the order in which pro- iii.

cesses enter their critical sections. and in fact it is possible that an individual
process will always find the critical section "full" (i. e. COUNT -- k) when-"-""
ever it happens to examine COUNT and therefore will be "locked out" of its r-. -

:. ~~critical section forever. --- ;
" " ~Rather than devise new algorithms for the k-critical section problem with - "

stronger fairness conditions, an obvious approach is to try to reduce the k- ""'"

critical section problem to the 1-critical section problem and then apply•• ,...
known solutions to the latter problem, e.g. IBJLFP821, ICtt75), ICtt78),

-

[CH791, [Lam741. Such a hybrid solution is commonly used in banks for
scheduling people waiting for a teller. People entering the bank line up in a -'"-
single queue. When one or more tellers become available, the person at the .°.-.
head of the queue goes to any free teller.-".'

To see the reduction that is illustrated by this simple example, think
of the position at the head of the queue as a "resource". Only one person =
has this resource at a time, and the queue itself serves to allocate that i -
resource in first- in-first-out (FIFO) order. Only the person holding the head- i.i-

of-queue resource is permitted to go to a teller, so the order of service by a
teller is "essentially" FIFO, modulo possible delay between leaving the head
of the queue and arriving at a teller' . Such a reduction is possible given
any 1-critical section solution, and the number of values of shared memory.
increases by only a factor of (k + 1).""•-.

The bank algorithm has a rather subtle defect which becomes apparent.-..
when several tellers become simultaneously free. If k > 2 tellers are free, one ""

'By running, a person might actually arrive at a teller before another who was ahead "
of him in the queue. Nevertheless, we consider this to be a reasonable approximation - :._-
of what people mean by FIFO since once one arrives at the front of the queue, one no•.•'--
longer has to wait for others. "'''"

7--

°.'.-'.

%I°'-

Precse dfintion of hes proertis ae deerre unil Sctio 3,afte th

.•agorihmshave bee prse t. • -" " • • o "-" •° . . °- . . .- ° '° ° .•
, .•%-°%-o % " "•.".%°..•• • •,, ,-1 -°° .-A trivial "generalization ofabnaysmahr yields. a" ° system°' exhibiting -••. •••• -

would like the first k people in line to all move "simultaneously" to a teller,
yet the algorithm requires them to file past the head of the queue one at a
time. If the person at the front of the line is slow, the k - 1 people behind
him are fo'rced to wait unnecessarily. In fact, if the person at the front of the
line "fails", then the people behind him wait forever and the system stops
functioning. In this case, one failure can tie up all of the system's resources!

We are thus led to generalize our requirements to include controlling the
degradation of processing in the event that a limited number of processes
fail during the execution of their protocols.

Our notion of "failure" is quite different from the "shutdown" considered
in [RP761 and [PF77I. Unlike a pro --s which shuts down, a failed process
does not announce to the world that it has failed. Rather, we say a process
fails if there is a time after which it executes no more steps of its program.
To distinguish a failed process from a correct one that is merely running very
slowly, one must look infinitely far into the future and determine that it never
takes another step. Thus, other processes have no way of distinguishing a
failed process from a correct one in a finite amount of time. (In particular,
timeouts won't work since we make no assumptions about the relative speeds
of processes.)

Our interest in this kind of failure stems partly from the practical prob-
lems of building fault-tolerant distributed systems and partly from the de-
sire to understand the dependencies among processes competing for entry . ..-

to their critical sections. Each instance of one process waiting for another
indicates a lack of concurrency in the whole solution. Taken together, these
dependencies tend to cause the whole system to run at the speed of the
slowest process. Algorithms which continue to operate correctly even when
a limited number of processes fail cannot exhibit such simple dependencies.
For example, if process A waits for process B to take some action and pro-
cess B were to fail, then process A would wait forever and make no further
progress toward its goal. Hence, B's failure would cause the whole system
to fail by locking out A. Insisting that algorithms be robust in the face
of a certain amount of failure gives us a formal way of studying degrees
of concurrency which in turn have implications for the running time of the
system.

At first sight, the concepts of robustness and fairness, say FIFO order-
ing, appear to be contradictory. Robustness says, for example, that if one
process fails in its trying protocol, the system must continue to function. In
particular, other processes which enter their trying protocols after the failed
one will necessarily enter their critical sections ahead of it. Since the appar-

4

-7t .. k . a-

.-- - - ,'-'. ''•

ently failed process might actually be correct but slow, robustness implies a
violation of the usual definition of FIFO ordering.

The problem is circumvented by defining the fairness conditions not in
terms of thi order in which processes enter their critical sections but rather
by the order in which they become "enabled" to enter their critical sections.
By enabled, we mean that a process no longer needs to wait for action by any
other process before it can go into its critical section, nor can the actions
or inactions of other processes prevent it from so doing. Intuitively, when
a process becomes enabled, a copy of the resource is reserved for it, and
actions of other processes are no longer needed in order for the given pro-
cess to complete its trying protocol. The key distinction between enabling
and actual entry to the critical section is that a process might become en-
abled passively by the action of some other process changing shared memory,
whereas entry to the critical section can take place only by a positive action
of the given process.

In this paper, we describe an algorithm, the Colored Ticket Algorithm,
for solving the k-critical section problem which is robust, enables processes
in FIFO order, and uses 0 (N 2) values of shared memory for fixed k. The
algorithm can be thought of as a distributed implementation of a queue, for
it simulates the behavior that would be achieved by explicitly storing the
entire queue of waiting processes in shared memory, but it uses far less shared .
space and is fast and simple to implement. We also show our algorithm to be
essentially optimal in terms of the amount of shared memory used by giving
an nl(N 2) lower bound on the number of distinct shared memory values for
any robust algorithm which so simulates a queue.

If one weakens the robustness conditions to permit lockout to occur in
case more than a prespecified number of processes fail, then more space-
economical solutions are possible [FLBB79]. However, these solutions lack
the elegance and simplicity of the Colored Ticket Algorithm as well as its
time efficiency. If one ignores robustness altogether, then 0 (N) values suffice
[LF831.

The main technical content of the paper is contained in the next four
sections. The Colored Ticket Algorithm is presented in Section 2. Section 3
presents a formal model of computation and precise definitions of properties
which characterize the k-critical section problem. Section 4 describes how
to translate the Colored Ticket Algorithm to a process in the formal model
and sketches how to prove that it solves the k-critical section problem in
small shared space. Section 5 contains the lower bound proof that shows . -

the Colored Ticket Algorithm to be space-optimal (to within a constant *"

. -. °". - °°

factor) among all algorithms that satisfy the strong form of the k-critical
section problem given in this paper.

6

I4

b.\d.

I ..o. .-

2 k-critical Section Algorithms

In this section, we present four algorithms, each a refinement of the preced-
ing, the last of which is the Colored Ticket Algorithm. The algorithms run
in an environment consisting of N processes, each with its own private mem-
ory, and a common shared memory (database) through which the processes
communicate. Access to the shared memory is via atomic transactions that
allow a process, in one indivisible step, to read the entire contents of shared
memory and modify it in an arbitrary way, depending in general on the data
just read.

We specify our algorithms and the transactions they use in a Pascal-like
language augmented with two new statements for specifying transactions,
start and commit. Statements executed dynamically after start and before
the next commit comprise a single atomic transaction. While it is possible
in this language to write transactions of unbounded size (for example, by
executing a loop between start and commit), the transactions we actually
use are all bounded, a fact that is important for the implementation in terms
of "test-and-set" instructions which we give in Section 3.

In order for our algorithms to have the desired correctness and robustness
properties, we make two assumptions about the implementation of transac-
tions:

1. A process crash in the middle of a transaction does not cause the sys-
tem to hang and leaves the shared memory as it was before beginning
the transaction.

2. The system never aborts transactions. (Alternatively, a transaction
that is retried repeatedly will eventually succeed.)

While these assumptions are difficult to implement exactly, they can be
approximated in real systems, so we believe our algorithms will be useful in
practice.

As a convenience, we use the construct "wait until C" as an abbreviation
foz "while not C do [commit; start)". Thus, every time around the wait loop
ends one transaction and begins another.

2.1 The Queue Algorithm

We first describe a simple but inefficient solution to the k-critical section
problem. This basic algorithm, the Queue Algorithm, stores the entire queue

7

S. - - . -

of waiting and critical processes in the shared variable. A process in any of
the first k positions of the queue is permitted to enter its critical section.
This algorithm requires no communication among processes other than that
provided lby the queue itself, and in fact, each process need only change
shared memory at the moments of entry to the trying protocol and remainder
section.

In the code given in Figure 1, the shared memory contains a single queue
which admits two operations, ENQUEUE places an element at the rear
of the queue, and REMOVE deletes a particular element from the queue,
regardless of where it occurs. Initially, the queue is empty.

repeat forever
start;
ENQUEUE(i); ¢

wait until i is in one of the first k positions of QUEUE;
commit; " " ".

{ Critical Section }

start;
REMOVE(i);
commit;

{ Remainder Section }

end repeat.

Figure 1: Queue algorithm (code for process i).

Note that many transactions might be executed before the process
reaches its critical section since each execution of the wait loop ends one
transaction and begins another. However, only the first of these actually
updates shared memory; the others are all "read-only".

2.2 Ticket Systems

While the Queue Algorithm satisfies all the correctness properties we want,
keeping the queue in shared memory requires too much space to make the
algorithm very interesting. Our goal is to find an algorithm equivalent to the

...::.:.

.-.-.. -...

.
.

.-'

Queue Algorithm which keeps a lot less information in the shared variable.
In other words, we wish to devise a space-efficient "distributed simulation"
of the Queue Algorithm.

All of our remaining algorithms are modeled after the ticket systems
often used in bakeries. A process wishing to enter its critical section takes
the next available ticket from an ordered sequence of tickets and then waits
until its ticket becomes valid, at which point it is enabled to enter its critical
section and proceeds to do so on its next step. When it leaves its critical
section, it discards its ticket and validates the next ticket in order, thereby
allowing the next process in line to proceed. (In case no process is cur-
rently waiting, the next ticket is nevertheless validated, and when a process
eventually takes that validated ticket, it will proceed directly to its criti-
cal section.) Once a ticket becomes valid, it remains valid until discarded.
Tickets are validated in the same order as they are issued, and at any time,

*I exactly k (non-discarded) tickets are valid, some of which may not have yet
been issued.

Since every process in its critical section holds a valid ticket, k-exclusion
is satisfied. Since tickets are validated in the order in which they are issued,
processes are enabled in FIFO order, so the algorithm satisfies our fairness
condition. Robustness follows since a process does not modify shared mem-
ory from the time it enters its trying protocol until the time it returns to its
remainder section; hence, whether or not it is alive in the meantime has no
effect on the rest of the system.

Any such ticket algorithm simulates the Queue Algorithm in the sense
that if the natural correspondence is made between transactions of the two
algorithms and those transactions are run in the same order, then processes
enter and leave their critical and remainder sections in exactly the same .-

order in both. Indeed, the simulated queue of the Queue Algorithm can
be obtained by arranging the processes holding tickets in increasing order
of their tickets. Issuing a ticket corresponds to adding a process to the

*" end of the queue, and discarding a ticket together with validating the next
corresponds to removing a process from the queue. The k valid tickets
always correspond to the first k positions of the queue.

Code to implement this basic paradigm is shown in Figure 2. Func-
tion TAKENEXTTICKET issues the next available ticket and returns it to .-
the calling program. Function IS VALID(T) returns a Boolean value telling
whether or not the ticket T is valid. Procedure VALIDATE NEXT TICI(ET(T) -

" -discards the ticket T and updates shared memory so as to cause the next
invalid ticket in sequence to become valid. In order to fully specify a ticket

0 9 ..

,-
.. o.

'.. .. ,.:

Irv

algorithm, one must specify these three subroutines.

local variable TICKET;

repeat forever

start;
TICKET:= TAKENEXTTICKET;
wait until ISVALID(TICKET);
commit;

{ Critical Section }

start;
VALIDATENEXT TICKET (TICKET);
commit;

{ Remainder Section };

end repeat. -1

Figure 2: Basic ticket algorithm (code for process i).

2.3 The Numbered Ticket Algorithm

The first ticket system we present, the Numbered Ticket Algorithm, uses an "
infinite number of values and hence requires an unbounded amount of shared
memory for its implementation. The Colored Ticket algorithm, which uses
only finite shared memory, is then described as two further modifications of
this algorithm.

In the Numbered Ticket Algorithm, tickets are natural numbers in their
usual order. The algorithm maintains two variables in shared memory.
ISSUE holds the most recently issued ticket, and VALID holds the most
recently validated ticket. Initially ISSUE = 0 and VALID = k. An entering
process takes a ticket by incrementing ISSUE and using the variable's new
value as its ticket number. Ticket number t is valid whenever VALID t; 4
hence, any process can determine by looking in shared memory whether or
not its ticket is valid. A process returning to its remainder section discards
its ticket and increments VALID.

10 "

. •A
S ---.. ..

.
5.

The code for the Numbered Ticket Algorithm is shown in Figures 2 and
3. The initial value of the local variable TICKET does not matter to the
operation of the algorithm.

global variable ISSUE = 0, VALID =k;

function TAKENEXTTICKET: ticket;
begin

ISSUE := ISSUE + 1;
return ISSUE;

end;

function ISVALID(T): Boolean
begin

return (T < VALID)
end;

procedure VALIDATENEXTTICKET(T);
begin

VALID := VALID + 1; "
end;

Figure 3: Numbered ticket algorithm.

The drawback to the Numbered Ticket Algorithm is, of course, that
ISSUE and VALID grow without bound.

2.4 Colored Ticket Algorithms

We now give two variations of the Numbered Ticket Algorithm based on
* the idea of colored tickets, the second of which is the final Colored Ticket

Algorithm.
In the previous algorithm, either ISSUE or VALID could be larger than

the other, and we say the larger one leads the smaller. (In case of equality,
each leads the other.) However, they could never be too far apart. If VALID
leads ISSUE, then there are VALID - ISSUE valid but not-issued tickets;
hence

VALID - ISSUE < k. - -

11am

.-. -.3...

If ISSUE leads VALID, then all k valid tickets are held by processes, and
there are ISSUE - VALID invalid tickets l d by processes waiting in their
trying protocols. Since there are only N processes in all, k of which hold

* valid tickets, we conclude that

ISSUE - VALID < N - k.

Let M I + max(k, N - k). Then we can determine which variable
leads the other given only the information:

* B =(LVALID/MI = [ISSUE/Af J)

* V = VALID mod M

e 1= ISSUE mod M

0,,Namely, if B = true, then VALID leads ISSUE iff V > I, and if B =false,

then VALID leads ISSUE if V <vJ2 Thus, we divide the tickets into blocks
of size M. B is true iff VALID and ISSUE are in the same block; V and!I are -

the relative positions of VALID and ISSUE within their respective blocks. It
is easy to see that if VALID and ISSUE are not in the same block, then they
must be in consecutive blocks, and the condition on M insures that which
block leads which can be determined by comparing V and I.

The colored ticket algorithms replace numbered tickets by colored tickets
that consist of ordered pairs T = (t, c), where t, the value of T, is a number
between 0 and M - 1 indicating the position of the ticket within the block,
and c, the color of T, is a non-negative integer indicating the block that
contains the ticket. We write T-ALUE and T.COLOR to denote the two
components of T. There is a natural one-to-one correspondence ?k between
numbered ticket : and colored ticket (i mod M, Li/M]). Using this corre-
spondence, a process can determine for colored tickets whether VALID leads
ISSUE without using the ordering on colors by computing:

o B:= (VALIDCOLOR = ISSUE.COLOR) -

te V oVALID.VALUE

* I:= ISSUE.VALUE

. in case k N - k, we can actually take A e max(k N - k) and adjust the conditions
appropriately.

12 co o

(' . "- blok lads hichcan e dtermned y coparng Vand . -'

Th clre icetagoihm rpac umeedtiktsb cloe tcet.'-'12'"'

W; 4 Z.

and then applying the above remarks. It also follows from the above remarks ,,
that IVALID.COLOR - ISSUE.COLOR < 1.

Now, a process can easily determine whether or not a ticket T that it
holds is valid. T is always valid if its color differs from both VALID.COLOR
and ISSUE.COLOR, for then its color must be less than both. If T's color is
the same as VALID.COLOR, then T is valid iff T.VALUE < VALID.VALUE.
Finally, if T's color is the same as ISSUE.COLOR but different from
VALID.COLOR, then T is valid iff VALID leads ISSUE. Using these ideas,
the function IS-VALID can be defined as in Figure 4.

function LEADS(A, B): Boolean; { Tests if A leads B }
begin

if A.COLOR = B.COLOR then
return (A.VALUE > B.VALUE)

else
return (A.VALUE < B.VALUE);

end;

function IS VALID(T): Boolean;
begin

if T.COLOR = VALID.COLOR then
return (T.VALUE < VALID.VALUE)

else if T.COLOR = ISSUE.COLOR then
return LEADS(VALID, ISSUE)

else
return true;

end;

Figure 4: Validity testing functions for colored tickets.

Unbounded Colored Ticket Algorithm We complete the Unbounded
Colored Ticket Algorithm by exhibiting in Figure 5 the definitions for
the ticket issuing and validating functions. Initially, ISSUE = (0,0) and
VALID = (k,O).

The Unbounded Colored Ticket Algorithm simulates the Numbered
Ticket Algorithm using the correspondence iP between numbered tickets and

.°

13

............................ imi

W, 77L77

constant M= I + max(k, N -k)

global variable ISSUE = (0,0), VALID =(k,0)

function TAKE_ NEXTTICKET: ticket;
begin

if ISSUE.VALUE < M - 1 then
ISSUE.VALUE: ISSUE.VALUE + I

else begin
ISSUE.VALUE := 0;
ISSUE.COLOR := ISSUE.COLOR + 1;
end;

return ISSUE;
end; -

procedure VALIDATENEXL-TICKET(T);
begin

if VALID.VALUE < M - 1 then
VALID.VALUE: VALID.VALUE + I

else begin
VALID.VALUE -.= 0;
VALID.COLOR: VALID.COLOR + 1;
end;

end;

Figure 5: Unbounded colored ticket algorithm.

14-

- - -- •'-° -

%4

%-N

colored tickets given above. Thus, we have bounded the set of ticket "val-
ues" at the cost of introducing an unbounded set of "colors". It may appear
that no progress has been made, but the algorithm paves the way for the
final modification which yields the space-efficient Colored Ticket Algorithm.

Colored Ticket Algorithm We now present the main contribution of
the paper, the Colored Ticket Algorithm. Like the previous algorithms, it
simulates the Queue Algorithm, but it is very space efficient, requiring only
0 (N 2) values of shared memory. It is obtained by modifying the Unbounded 4
Colored Ticket Algorithm so that only k + 1 different colors are used. This
requires that tickets (and colors) be reused.

The change from the unbounded version of the algorithm comes when
ISSUE.COLOR or VALID.COLOR is to be incremented. The new algorithm
instead considers two cases. If the leading pointer (ISSUE or VALID) is being
incremented, then a new color is chosen that is different from the color of --

any currently issued or validated ticket and different from the color of the
other pointer. This insures that no two processes ever simultaneously hold
the same ticket. If the trailing pointer is being incremented, then it is set
equal to the color of the leading pointer. That this is correct follows from
the fact that the pointers (in the Numbered Ticket Algorithm) never differ -

by more than M.
To see that it is always possible to select a new color when needed, we

show (for the Unbounded algorithm) that every color in use at the time a
new color is needed is the same as the color of some valid ticket; hence,
at most k colors are then in use. A color is in use if it is the color of !

a valid or issued ticket that has not been discarded, or if it is equal to
VALID.COLOR or ISSUE.COLOR. Note that in the exit protocol, a new

ticket is validated immediately before the old one ,s discarded, so except for
the brief moment between validating the new ticket and discarding the old
one, exactly k tickets are valid, the most recently validated ticket T is still

* valid, and VALID.COLOR = T.COLOR. Hence, VALID.COLOR is always the
color of one of the k valid tickets, so it suffices to show that when a new
color is needed, both ISSUE.COLOR and the colors of all issued but not yet
validated tickets are the same as VALID.COLOR.

There are two cases. If a new color is needed because VALID is about
to be incremented, then VALID.VALUE = M-l - 1, VALID leads ISSUE, and
a process is in its exit protocol attempting to validate a new ticket. Then
ISSUE.COLOR = VALID.COLOR since iP-'(VALID) - ,-I(ISSUE) 5 k <
A - 1. Since there are no issued but not validated tickets, the only colors

15* -

.•

in use are those belonging to the k valid tickets.
On the other hand, if a new color is needed because ISSUE is about to

be incremented, then ISSUE.VALUE = M - 1, ISSUE leads VALID, and a

ticket is ab6ut to be issued to an entering process. Again, ISSUE.COLORVAI.OOfr~~(SU)41 VLD - l . oevr

any outstanding invalid tickets lie between VALID and ISSUE, so they also
have color VALID.COLOR. Again, the only colors in use are those belonging
to the k valid tickets.

We conclude that with k+ 1 colors altogether, there is always a free color
whenever a new one is needed.

To permit a process to determine which color is free, we introduce an
array QUANT of length k + 1 into the shared variable, where QUANT(c) E
{0, 1,. k) gives the number of valid tickets of color c. There are exactly
k valid tickets, so the total number of different values for the QUANT array
is the number of partitions of k into k + I sets, or (2). While this number
is exponential in k, it is independent of N. QUANT is updated whenever a
ticket is discarded and a new one is validated.

The code for finding a new color is shown in Figure 6. It simply scans
for a color with QUA NT .0.

function NEWCOLOR: integer; Returns unused color .
local variable C;
begin

while QUANT(C) > 0 do C C + 1;
return C

end;

- Figure 6: Find unused color function (used by colored ticket algorithm).

The final algorithm is contained in Figures 2, 4, 6 and 7. Initially,
ISSUE = (0,0) and VALID = (k,0).

This algorithm simulates the Unbounded Colored Ticket Algorithm. To
prove this, one shows that any two issued or validated (and not discarded)

tickets T and T' have the same color in this algorithin if they have the same

Actually, V-(SU)-V(AI)< - k- I since the entering process does not
yet hold a ticket, but we do not make use of this fact.

16
Ti.' ..

C := 0; -:'.*-::-

whlSUN()>0d =C+1 __.

reur ""-

constant M I + max(k, N - k); -

global varia'ble ISSUE =(0,0), VALID =(k,O), QUANT[0,... ,QUANT[k) 0;

function TAKENEXTTICKET: ticket;
begin

if ISSUE.VALUE < M - 1 then
iSSUE.VALUE : ISSUE.VALUE + I

else begin
if LEADS(ISSUE, VALID) then

ISSUE.COLOR := NEWCOLOR
else

ISSUE.COLOR : VALID-COLOR;
ISSUE.VALUE := 0
end;

return ISSUE;
end;

procedure VALIDATENEXTTICKET(T);
begin

if VALID.VALUE < M - 1 then
VALID.VALUE := VALID.VALUE + I

else begin
if LEA DS(VALID, ISSUE) then

VALID.COLOR := NEWCOLOR
else

VALID.COLOR := ISSUE.COLOR;
VALID.VALUE := 0
end;

{Update quantity information.}

QUANT(VALID.COLOR) :=QUANT(VALID.COLOR) + 1;
QUANT(T.COLOR) := QUANT(T.COLOR) - 1;

end;

Figure 7: Colored ticket algorithm.

17

color in the Unbounded algorithm; hence, the two algorithms always make
the same decisions. We leave the details to the reader.

The total number of shared memory values needed by the Colored Ticket
Algorithm Is the product of the number of values assumed by QUANT,
ISSUE, and VAT TD. This works out to (2)((k + 1)M) 2 0 (N 2) as de- .'

sired, since M - (N).

18

.'............

..

3 A Formal Model for Systems of Processes

We now present a formal model of computation and state the conditions
that define the k-critical section problem. The model is derived from that
of [BJLFP82]. It can also be regarded as a special case of the general model
of [LF81].

3.1 Processes and Systems

A process is a quadruple P = (V,X,6, 2), where

* V is a set of values for a shared variable,

* X is a (not necessarily finite) set of process states,

* 6 is a total function from V x X to V x X, the transition function,
and

* R is a total function from X to {R,T,C,E}, the region function.

Assume process P is in state x and the shared memory has value v. A step
of P changes the state to z? and the shared memory to V, where (v', z')
6 V).

For a state x E X,)(z) gives the region of x, where R denotes the --

remainder region, T the trying region, C the critical region and E the exit
region. We assume that 6 respects R as follows. For every (v, x) E V x X:

1. R (x) E {R,T} implies R(6(v,x)) E {T,C}, and

2. R(x) E {C,E} implies R(6(v,x)) E {E,R).

The allowed transitions are indicated in Figure 8. The transitions out of
R and T comprise the trying protocol, and the transitions out of C and E
comprise the exit protocol.4 We "abstract away" the steps comprising the
critical and remainder sections treating only the protocols explicitly; hence
the absence of self-loops on R and C. Thus, the next step of a process in R
takes it out of R, and similarly for C.

'Our formal model imposes a slight restriction on the form of protocols in that all
transitions leaving a state of the trying region must belong to the trying protocol (and
similarly for the exit region and protocol). Thus, a process, once permitted to begin
its critical section, must first take a step to leave the trying region before it begins
executing steps of its critical section, and the step which takes it out of the trying
region is considered to be a part of the trying protocol. This restriction is for technical
convenience only and does not weaken the results, for any protocol can be euily put
into this form by adding dummy steps to the ends of the trying and exit protocols.

19

6
" J." 1f

. -' ' V'.:

Figure 8: Possible region changes.

For a natural number N, let [N] denote N}. A system S of N
processes is a collection of processes Pi = (VX.,6,, R,), 1 :5 i N, all

j having the same shared variable V.
An instantaneous description (i.d.) q of S is a snapshot of the configura-

tion of S and completely determines S's possible future behaviors. Formally,
q is an (N+1i)-tuple (v, X1 ,. . . , ZN), where v E V is the contents of the shared
variable and x, E X., 1 < i < N, are the states of the N processes. We
denote v by V(q) and x, by Xi(q), I < i < N.

The functions 6, and Ri of the individual processes are naturally ex--
tended to functions on the set of i.d.'s of S by defining

where (x') j 6(v, x-), and

'-'77--,

........)

A schedule It for S is any finite or infinite sequence of elements of [N]1. 5

A schedule describes the interleaving of process steps in a particular "run"
of the system. Since the processes are deterministic, the entire run is deter-
mined by the starting i.d. q of the system and a schedule h. Formally, the

pNote that h is not required to be "fair". Processes that take only finitely many steps
in h are considered to have failed.

0 20

I t ;"W few I.°

run determined by q and h = hl,h 2 ,... is the finite or infinite sequence of
i.d.'s Q(q,h) = qo,ql,q2,... such that:

1. If h is infinite then Q(q,h) is infinite, and if h is finite then IQ(q,h) =

IhI + 1.

2. qo =q.

3. If qi are successive elements of Q(q, h), then q, = (qi-1).

If Q(q,h) is finite, then the last i.d., q., is the result of Q(q,h), and we
denote q. by 6(q,h), extending 6 once again. I.d. q' is reachable from q via
h provided 6(q,h) = q', and q' is reachable from q if q' is accessible from q
via some finite schedule h.

3.2 Equivalence of Systems

Let S and S' be systems of N processes, with q and q' i.d.'s of S and S'
respectively. We say that (S, q) and (S', q') are equivalent if for every finite
schedule h, all processes are in the same regions in 6(q,h) and 6'(q',h); that
is, for every i E [N], JRi(6(q,h)) =R (fq',h)).

3.3 Dependencies Among Processes

We have noted that processes are always free to leave their remainder or
critical regions on their own, but the same is not true for the trying and
exit regions. We next give some important definitions that describe possible
dependencies among processes progressing through their regions.

Let Z denote any region. A process P in a system of processes is Z-
enabled in i.d. q if for every schedule T in which i occurs infinitely often,
there is a finite prefix h of T such that Rj(b(q, h)) = Z. Thus, the Z-enabled
i.d.'s are those in which a process is either already in Z or will eventually
enter Z if it takes infinitely many steps, no matter what the other processes
do. Note that a process P can become Z-enabled because of its own actions
or because of actions of other processes. A Z-enabled process can be thought
of as passively belonging to region Z.

We say that Pi is T-waiting in q if it is in T but is not C-enabled in q.
Similarly, we say that Pi is E-waiting in q if it is in E but is not R-enabled
in q.

21

7'.%. "..

" - - -. - .- - - -- .-- - .- . - ."- . P

II

3.4 Properties of Systems

We now state the properties that define the k-critical section problem. ., _-
Throughout this section, S denotes a system of N processes, q an i.d. of
S, k < N a natural number, and #Y the cardinality of the set Y.

Our first condition is the basic k-exclusion condition.

* k-Exclusion. I.d. q satisfies k-exclusion if #{i E [N] I Rj(q) C} <
k. S satisfies k-exclusion from q if every i.d. reachable from q in S
satisfies k-exclusion.

Note that any set of processes that are C-enabled but not in C can, by
taking steps on their own, reach an i.d. in which all are simultaneously in C.
Thus, if S satisfies k-exclusion from q, the number of C-enabled processes
in any i.d. reachable from q is at most k.

Our second condition describes our robustness requirements. We say
that i.d. q is k-full if #{i E [N] I Pi is C-enabled in q} > k. We say that a
process P' makes progress in a run if, for some pair of i.d.'s q' and q" in the
run, either

1. Ri(q') R j,(q"), or " -.

2. P is T-waiting in q' but not in q", or

3. Pi is E-waiting in q' but not in q".

e Avoidance of k-Deadlock. An infinite schedule h exhibits k-
deadlock from q if no process makes progress in the run Q(q, h), and
either

1. some process is T-waiting in q and q is not k-full, or6!
2. some process is E-waiting in q.6

oS avoids k-deadlock from q if no infinite schedule exhibits k-deadlock
from any i.d. reachable from q.

6Intuitively, a schedule exhibits k-deadlock if some process "wants" to make progress
and progress is possible, but no process actually does make progress. At first sight,
it might seem necessary to exclude failed processes from consideration in the formal
definition, for we do not consider that progress is possible for failed processes. However,
it is unnecessary to distinguish between failed and non-failed processes because our
convention of no self-loops on R and C implies that every non-failed process "wants"
to make progress (since it cannot continue taking steps and remain in R or C), and at
least one process is non-failed in every infinite schedule.

22 •

- -• ° .

-------.

Our third and final condition describes the fairness property, FIFO en-
abling. Intuitively, violation of FIFO enabling occurs if a process remains
T-waiting while another process, beginning in its remainder region, becomes
C-enabled. Similarly, a violation occurs if a process remains E-waiting while
another process, beginning in its critical region, becomes R-enabled. For-
mally, let q be an i.d. and h a finite schedule. We say Pj overtakes Pi in
Q(q,h) if P. is T-waiting in all i.d.'s of Q(q,h), Rj(q) = R, and P is C-
enabled in 6(q,h), or if P is E-waiting in all i.d.'s of Q(q,h), Rj(q) = C,
and Pj is R-enabled in 6(q,h).

* FIFO Enabling. S achieves FIFO enabling from q if for all q' reach-
able from q, all finite schedules h, and all ij E [N], P does not
overtake P in Q(q',h).

S. The Problem Let q be an i.d. with every process in its remainder region.
A system S solves the k-critical section problem starting from q if it satisfies
k-exclusion, avoids k-deadlock, and achieves FIFO enabling from q.

* 23

. . . :-.:

- -

. L. ' - ~J .. PL E p ! ! *, V ~ ? Y-,. P-,-. -L.' v , - .- ,- .. . -,-. .*7--- .-

Te C
° , °.~ ,"-.

4 Upper Bound ""°

The Colored Ticket Algorithm, when translated into the formalism of our

model, shows that the k-critical section problem can be solved by a system .
S that uses only 0 (N2) values of shared memory.

The translation requires a few comments. The transactions used in the
algorithm make several accesses to the shared global variables, change inter-
nal variables, and branch to one of several possible exits depending on the
values in shared and private memory at the start of the transaction. In our 4
formal model, each transaction becomes a single process step. The program 7
counter and all internal storage of a process is represented by the state x,
and the entire contents of the global variables is represented by the value v
of the shared variable. To construct the value (V, z') of the transition func-
tion 6(v,z), if the program counter in x points to a start instruction, then
run the algorithm until it encounters a commit statement, and move the
program counter past the commit. x' is the state and v' the shared memory
contents that results. If a commit is never reached, or if the program counter
in z does not point to a start instruction, then 6 (v, x) is defined arbitrarily.
This translation is not fully general, but it is adequate for algorithms such

0 as ours in which every transaction terminates, and the next instruction to
be executed after a commit is always a start.

Theorem 4.1 The Colored Ticket Algorithm, when translated into the for-
mal model as described above, solves the k-critical section problem and uses
(k + 1)(2k)(I + max(k, N - k)) 2 = O(N 2) values of shared memory.

A formal proof can be constructed following the development given in
Section 2. Namely, one first proves that the Queue Algorithm solves the k-
critical section problem. Next one shows that each of the three successively-
presented algorithms is equivalent to the preceding in the sense formally
defined in Section 3.2. Finally, one applies the following lemma, whose
proof is straightforward.

Lemma 4.2 Assume (S,q) is equivalent to (S',q'). If S satisfies the k-
critical section problem from q, then S' satisfies the k-critical section problem
from q'.

24

.° °'°

.'o b.-~ -.2

I
T M -., 5 Lower Bound ",-'"

In this section, we establish a lower bound on the size of the shared variable
of any system of processes that solves the k-critical section problem. We 4
assume throughout that k and N are natural numbers with N : k + 2, S is
a system of N processes, and qo is an i.d. with every process in its remainder
region such that S solves the k-critical section problem from qo.

Our method of proof is to construct a collection of runs and show that
each leaves the shared variable in a distinct state. In order to carry out the 4
construction, we need several "liveness lemmas that show certain kinds of

- progress are always possible.

5.1 Progress Lemmas

We begin with some basic properties which follow from the fact that S
. solves the k-critical section problem, FIFO enabling places rather severe

constraints on the order in which processes can become C-enabled, which
are expressed by the relation -<q that we next define.

Consider any i.d. q and processes P and Pi. We define i -<q i to hold
precisely if one of the following conditions holds at q:

1. i is C-enabled and Pi is in E u R;

2. Pi is C-enabled and Pi is T-waiting;

3. Pi is T-waiting and P is in EU R;

4. Pi and Pi are both T-waiting, and in some run leading from q0 to q,
Pi last entered T before P did.

We also define ahead,(q) = {i E [N] i -<q j}. The ordering -<q is illustrated
in Figure 9.7

*- The first lemma says that the order in which processes become C-enabled
from q respects .

Lemma 5.1 Let q be reachable from qo, and let i -<g j. Let h be a finite
schedule such that Pi is C-enabled in 6(q,h). Then Pi is C-enabled in some
i.d. in Q(q,h).

'One can show that if q is reachable from qo, then -<q is a strict partial order which
totally orders the T-waiting processes in q, as illustrated, but we do not need this fact.

25

i.e"

,... ,.. -.- -.... . . , - .-.-..,.,.., .. "-'.-
",.' .-.. .. '.-, - . .• .' -.*,, *,.* .**.*,...,,..* ".,-

7%-

6 °, .t-

C-enabled T-waiting E U R

Figure 9: The relation -.<9,

Proof: Assume the conditions of the lemma. Since i -<q j, P is either C-
enabled or T-waiting in q. If I' is C-enabled, then we simply choose h' = X,
the null schedule, and we are done. Hence, assume Pi is T-waiting in q.

Again since i -<q j, Pi is either in E u R or is T-waiting in q. In either
case, there exists an i.d. q, (possibly equal to q) and schedules h0 , hl such
that q, is reachable from go via ho, q is reachable from q1 via hj, P is in
Eu R in qj, and Pi is T-waiting in every q E Q(qj,hj). Pi is not T-waiting
in every q' E Q(q,h), for if it were, then Pj overtakes P in Q(ql,hl.h),
violating FIFO enabling. Hence, P is C-enabled in some i.d. in Q(q,h). I

The next lemma implies that among the T-waiting processes there is one
that is "ahead" of all the others.

Lemma 5.2 Let q be reachable from q0, and assume that at least one process
is T-waiting in q. Then there is a T-waiting processes P in q such that i -<q j
for all j i i such that Pi is T-waiting in q.

Proof: Let q be reachable from qo via h, and consider the run Q(qo,h).
Order the T-waiting processes in q according to the times of their most recent
entry to T in Q(qo,h), and let P be the first such process. By definition,
i -<q j holds for all j 9 i such that P is T-waiting in q. I

26

-, .'

WF W

Lemma 5.3 Let q be reachable from qo.

1. If q is not k-full, then no process i8 T-waiting in q.

2. No process is E-waiting in q.

Proof: 1. Assume that q is not k-full but some process is T-waiting in q.
We proceed to derive a contradiction.

By Lemma 5.2, there is a T-waiting process P in q such that i -<q j for
all j : i such that Pi is T-waiting in q. Since P is T-waiting in q, there is
a schedule h in which P takes infinitely many steps but it remains in T in
every i.d. of Q(q,h); hence Pi is T-waiting in every i.d. of Q(q,h).

Suppose a process Pi becomes C-enabled during Q(q,h). That is, sup-
pose one can write h = h,. h2. 3 such that Pi is not C-enabled in
q, = 6(q,hj), but Pi is C-enabled in 6(q l ,h2). Then i -, j holds by
definition, so by by Lemma 5.1, P is C-enabled at some i.d. in Q(ql,h 2),
a contradiction. Hence, no process becomes C-enabled during Q(q,h), so
none of the i.d.'s in Q(q,h) are k-full.

Now, for some suffix Q(q',h') of the run Q(q,h), no process makes
progress since each process can change region or become R-enabled only
a finite number of times without becoming C-enabled. Thus, h' exhibits
k-deadlock from q', contradicting the avoidance of k-deadlock condition.

2. The proof is similar (and simpler). Assume that P is E-waiting in
q. Then there is a schedule h in which P takes infinitely many steps but it
remains in E in every i.d. of Q(q, h). It follows that Pi is E-waiting in every
i.d. of Q(q,h).

Only processes Pi already in E in q can become R-enabled during
Q(q,h), and that can happen at most once per process, for otherwise Pi.
would overtake Pi, violating the FIFO enabling condition. Hence, in some
suffix Q (q', h') of the run Q(q, h), no process makes progress since each pro-
cess can change region or become C-enabled only a finite number of times
without becoming R-enabled. Then h' exhibits k-deadlock from q', contra-
dicting the avoidance of k-deadlock condition. I

The following lemma says that a process can only be C-enabled while it
is in its trying or critical region.

Lemma 5.4 Let q be reachable from qo. If process Pi is C-enabled in q,
then Pi is in T U C in q.

.-- r-.-

27

---- 7 --

-.'

,..

Proof: Assume the contrary, that Pi is C-enabled in q, and P is in Eu R U. .R -

in q. For each j E [N], j # i, run Pi for zero or more steps until an i.d.
is reached in which it is in T U C. This procedure must terminate after a
finite number of steps, for otherwise Pi remains forever in E Ui R. But that
is impossible by Lemma 5.3 and the absence of self-loops on region R. Call
the resulting i.d. q'.

In q', every process other than Pi is either T-waiting or is C-enabled. At
most k processes can be C-enabled (by the remark following the definition
of k-exclusion). Thus, since we assume N _> k + 2, some process Pf is T-
waiting in q'. Pi is still C-enabled in q' (by definition of enabling), so it
enters C in the run Q(q', im) for some m. By Lemma 5.3, q' is k-full, so
Pt remains T-waiting throughout Q(q,i m). But then Pi overtakes Pe in
Q(qI,jm), violating FIFO enabling. -

The next lemma says that, no matter what the other processes do,
any process in its trying region that takes infinitely many steps eventually
reaches its critical region, provided that there are not too many processes
ahead of it.

(.- Lemma 5.5 Let q be reachable from qo, and let P be in T in q. Then
#aheadi(q) < k iff Pi is C-enabled in q.

Proof: Assume the conditions of the lemma.
(=.) Suppose #aheadi(q) < k but Pi is not C-enabled in q. Then P must
be T-waiting in q, so by Lemma 5.3, q is k-full. But then all the processes
which are C-enabled in q are in aheadi(q), so that #aheadi(q) _> k. This is
a contradiction.
(4=) If P is C-enabled in q, then P, is in T U C by Lemma 5.4. But then
aheadi(q) = 0. 1

* The next lemma says that it is always possible for all the processes to
run so as to end up simultaneously in their remainder regions.

Lemma 5.6 Let q be reachable from qo. Then there ezists q' reachable from
q such that every process is in its remainder region in q'. Moreover, q' can
be reached from q via a schedule in which no process already in its remainder

* region in q takes any steps.

Proof: It suffices to show that if not all processes are in their remainder
regions, then there is some P not in R which is C- or R-enabled. Assuming

28

...

•. - -"" ,*-tSSCtf~.~.-!~Ct.C. * .t..

"......

we have shown that such a Pi exists, we run Pi until t changes regions. We
then repeat this construction on each resulting i.d. L til an i.d. is reached in

7 which all processes are in R. This procedure must eventually terminate since
each process can change regions only finitely many times before entering its
remainder region.

Now suppose that every processes not in R is neither C- nor R-enabled
in q. Then q is not k-full, since no process is C-enabled, by assumption and
Lemma 5.4. By Lemma 5.3, no process is T- or E-waiting in q; therefore, no
process is in T U E in q. But also no process is in C in q since no process is
C-enabled. Hence, every process is in R. It follows that if not all processes
are in R, then some such process is C- or R-enabled, as desired. I

5.2 The Schedule h(i,j)

Now choose any q reachable from qo in which all processes are in their
remainder regions. q exists by Lemma 5.6. Fix i and j, with k _< j < i <
N - 1. Construct a schedule, h(i,j), as follows.

1. Starting at q, each of Pi,...,Pk takes steps on its own, just until it
enters its critical region. This is possible by Lemma 5.5. Then each
of Pk+1,... ,PN takes one step, going to its trying region. Let PN'S
state after its entry be denoted by x, for future reference. (Note that
x does not depend on i or j.)

2. P, takes steps on its own, just until it returns to its remainder region,
leaving one empty critical slot. This is possible by Lemma 5.3. Call
the resulting i.d. q' for later reference. (Note that q' does not depend
on i or j.)

3. Each of Pk+ 1,... , P in turn takes steps on its own, just until it returns
* to its remainder region. This is possible by Lemmas 5.5 and 5.3.

4. Each of Pk+1,..., P takes one step, thereby entering its trying region
once again. The resulting i.d. is denoted q(i,j).

This construction is diagrammed in Figure 10. Arrows are labeled by
. '0', '1', or '*' to indicate that the corresponding process takes 0, 1, or an

unspecified number of steps.

.-

. -.. .* .

Pi A ... PA Pk,.i.... P, P,~.1... P Pi+i ... PN I.D.

R R R R R q

1 0 10101
R* C To To To

R C T R T qij

~00

Figure 10: The Lower Bound Construction.

5.3 Distinctness of shared values

We now relate the construction to the size of shared memory.

Lemmna 5.7 The shared variable has a distinct value in each q(i,j).

Proof: Assume to the contrary that V(q(i,j)) = V(q(i',j')) for (ij) 96
(i',j'). Without loss of generality, it suffices to consider two cases.

0 Case 1: i <i'.
Among all T-waiting processes in q(',j'), P.'+1 was the first to enter its

trying region, so #aheadis+i(q(i',j')) = k - 1. Then P.'.j is C-enabled in
q(i',j') by Lemma 5.5. Also Pi+ is in the same state in both q(i,j) and
q(i',j'). Since also the shared variable has the same value in both i.d.'s, it

0 follows that P,+4., starting from q(i,j), can take some number mn of steps
and enter its critical region. We claim that the schedule 1=h(ij) -(i'+ 1)'
violates FIFO enabling from q. This is because Pip+, goes from its remainder
to its critical region during 1K while Pi+j, which entered its trying region first,

0 30

remains T-waiting. (Pi+l does not become C-enabled during N, for if it did,
then k-exclusion would be violated in the schedule X. (i+)w.)

Case 2- i = ie and j < j'.
Consider schedule h constructed as follows. Starting from q(i,j),

Pg.+t takes one step, thereby entering the trying region. Then each of
P+,..., PN, Ph+1,..., Pj, in turn, takes sufficiently many steps to return
to its remainder region, possible by Lemmas 5.5 and 5.3. Call the resulting
i.d. qj. Then aheadji,+(ql) = (2,...,k}, so Pg.+, is C-enabled in qi by
Lemma 5.5.

Now consider the application of h to q(i,j') and let q'i be the resulting i.d.
Pj,+, is in the same state in both qj and qj, and also the shared variable
has the same value in both i.d.'s; thus Pi+i, starting from qj, can take
some number m of steps and enter its critical region. Hence, Pi,+i enters
its critical region in the run Q(q(i,j'),h'), where h' = h (j' + I)-. The
schedule h' violates FIFO enabling from q(i,j'), for P,+ overtakes P+ 1 in
Q(q(i,j'),h'). I

5.4 Lower bound theorem

Finally we prove the main lower bound result.

Theorem 5.8 Let N ! k + 2, and let S be a system of N processes with
value set V for its shared variable, and let qo be an i.d. such that S solves

the k-critical section problem from qo. Then - .

lvi k 2 + N -k- 1= f(N 2).

Proof: The proof proceeds by induction on k.
Base: k = 1.

By Lemma 5.7, there are at least (N21) - 1. (N22) + N - 2 distinct
values.
Inductive step: k > 1.

By Lemma 5.7, there are (N1--1) distinct values of the variable for the
i.d.'s q(i,j) for i,j satisfying k < j < i < N - 2. Each such q(i,j) is k-full
since P2,...,Pk and P+ are C-enabled in q(i,j). Hence, by k-exclusion,
if v(i,j) is the value of the shared variable in q(ij), then no finite number
of applications of PN's transition function 6 N to the pair (v(i,j), x) can put

31

%;

9% --

PN in its critical region. (Recall that PN is in the same state x in each
q(i,j).) \.

Now reconsider the construction of Section 5.2. Starting at q', let each of
P,., Pk take steps until they return to their remainder regions, possible
since all are R-enabled by Lemma 5.5. Now let each of Pt+k,...,PN-tj in
turn enter their critical regions and then return to their remainder regions,
again possible by Lemmas 5.5 and 5.3. Call the resulting i.d. q".

Pl,.. ;,PN- are in their remainder regions and PN is in its trying re-
gion in q", so PN is C-enabled in q" by Lemma 5.5. From q", consider
Pl,.., Pj.- as comprising a system, S', of N - I processes. Since S solves
the k-critical section problem from q, it can be shown that S' solves the
(k - 1)-critical section problem from (the appropriate restriction of) q".
Thus, by induction, the number of values that can be taken on by S"s
shared variable is at least

(N -) -(k -1).._..-" -
Ni. -L k -

- (~l(1) + N- k-i1.

Since Pv is C-enabled in q", each value v that can be taken on by the shared
variable in i.d.'s reachable from q" using only P, ... , PN_ has the property
that some finite number of applications of 6N to the pair (v, x) will put PN
in its critical region. Thus, these shared variable values are disjoint from
the values v(ij) considered above...

We conclude that

N k(-)+N -k -1,

as desired. .

32

. . .. of

..* *

*....
i
o "

**

6 Summary and Open Questions

In this paper, we have described the k-critical section problem in general
terms and have defined an extremely robust version of the problem: equiv- -: .,
alence with a particular simple but space-inefficient algorithm, the Queue
Algorithm.

As our main result, we have presented an interesting new algorithm, the
Colored Ticket Algorithm, which solves the given version of the problem
and uses only 0 (N 2) values of the shared variable. Our lower bound proof
shows that, for fixed k, this algorithm is optimal to within a constant factor
in terms of number of values of shared memory.

There is still a large gap between the constants in the upper and lower
bounds. Both depend on k, but the constant in the upper bound is expo-
nential in k, while the constant in the lower bound is linear in k. It remains
to close this gap.

Acknowledgement

We are grateful to Brian Coan for helpful comments on an early draft of .

this paper. "

-3 -

33

. •"°.".f.o. "''

. .

References . -

[BJLFP82] J. E. BURNS, P. JACKSON, N. A. LYNCH, M. J. FISCHER, at
AND G. L. PETERSON. "Data Requirements for Implementation of N-
Process Mutual Exclusion Using a Single Shared Variable". J. ACM
29, 1 (1982), 183-205.

[Bur8l] JAMES E. BURNS. "Complexity of Communication among Asyn-
chronous Parallel Processes". Ph. D. Thesis, Georgia Institute of Tech-
nology, 1981.

[CH751 ARMIN B. CREMERS AND THOMAS N. HIBBARD. "An Algebraic
Approach to Concurrent Programming Control and Related Complex-
ity Problems". Technical Report, University of Southern California,
(Nov. 1975). (Presented at Symp. on Algorithms and Complexity,
Pittsburgh, April 1976.)

[CH78] ARMIN B. CREMERS AND THOMAS N. HIBBARD. "Mutual Exclu-
sion of N Processors Using an O(N)-Valued Message Variable". In
Proc. 5th ICALP, Udine, Italy, Lecture Notes in Computer Science,
vol. 62, Springer Verlag, 1978, 165-176.

[CH79] ARMIN B. CREMERS AND THOMAS N. HIBBARD. "Arbitration and
Queueing under Limited Shared Storage Requirements". Technical Re-
port No. 83, Dept. of Informatics, University of Dortmund (Mar. 1979).

[deB67] N. G. DEBRUIJN. "Additional comments on a Problem in Concur-
rent Control". Comm. ACM 10, 3 (Mar. 1967), 137-138.

[Dij65] EDSGAR W. DIJKSTRA. "Solution of a Problem in Concurrent Pro-
gramming Control". Comm. ACM 8, 9 (1965), 569.

[EM72] MURRAY A. EISENBERG AND MICHAEL R. MCGUIRE. "Further
Comments on Dijkstra's Concurrent Programming Control Problem".
Comm. ACM 15, 11 (Nov. 1972), 999.

[FLBB79] MICHAEL J. FISCHER, NANCY A. LYNCH, JAMES E. BURNS,

AND ALLAN BORODIN. "Resource Allocation with Immunity to Limited
Process Failure". Proc. 20th Annual IEEE Symp. on Foundation' of
Computer Science, (Oct. 1979), 234-254.... .

[Knu66] DONALD E. KNUTH. "Additional Comments on a Problem in Con-
current Programming Control". Comm. ACM 9, 5 (1966), 321-322.

34

"-i- 2 ':'-~~~~~~~~~~~~~~.. -... "... -.-" - .?'?---... -."- -.2 .--°.. .-.. . .. -i .,

".-. ". n

[Lam74] LESLIE LAMPORT. "A New Solution of Dijkstra's Concurrent Pro-
gram Problem". Comm. ACM 17, 8 (1974), 453-455.

[Lam76] LESLIE LAMPORT. "The Synchronization of Independent Pro-
cesses". Acta Informatica 7 (1976), 15-34.

[Lam771 LESLIE LAMPORT. "A Bug in the Bakery Algorithm". Technical
Report CA-7704-0611, Massachusetts Computer Associates, Inc. (Apr.
1977).

[Lam80] LESLIE LAMPORT. "The Mutual Exclusion Problem". Unpublished
manuscript (1980).

[LF811 NANCY A. LYNCH AND MICHAEL J. FISCHER. "On Describing the
Behavior and Implementation of Distributed Systems". Theoretical
Computer Science 19 (1981), 17-43.

[LF83] NANCY A. LYNCH AND MICHAEL J. FISCHER. "A Technique for De-
composing Algorithms which Use a Single Shared Variable". J. Comp.
Sys. Sci. 27, 3 (1983), 350-377.

[Mor79] JOSEPH M. MORRIS. "A Starvation-Free Solution to the Mutual
Exclusion Problem". Information Processing Letters 8, 2 (Feb. 1979),
76-80.

[Pet801 GARY L. PETERSON. "New Bounds on Mutual Exclusion Prob-
lems. Technical Report TR 68, University of Rochester (Feb. 1980).

[Pet81] GARY L. PETERSON. "Myths about the Mutual Exclusion Prob-
lem". Information Processing Letters 12, 3 (Jun. 1981), 115-116.

[PF771 G. L. PETERSON AND M. J. FISCHER. "Economical Solutions for
the Critical Section Problem in a Distributed System", Proc. Ninth
ACM Symp. on Theory of Computing, (1977), 91-97.

[RP76] RONALD L. RIVEST AND VAUGHAN R. PRATT. "The Mutual Ex-
clusion Problem for Unreliable Processes: Preliminary Report". Proc.
17th Annual IEEE Symp. on Foundations of Computer Science (1976),
1-8.

35

• . -.",

..... - . :i'i . • . . . ~ ..'-i .. .- .- ~ --1) -

.'.

I
-I

FILMED

"-1..'
-," -- -"--

